Financial Services Blog    

第7回 金融ウェビナー

先進国で効果的なAI活用が進めば、大きな価値を生み出すことはよく知られています。しかし、日本でAIの活用を進めていく意味合いが、他国と比べても非常に大きいことは必ずしも理解されていません。アクセンチュアによる2035年時点の推計を見ると、AIを活用しない場合の日本の経済成長率はわずか0.8%。その一方で、企業が業務遂行ツールとしてAIの活用を進めた場合は2.7%と、3倍を上回る成長率を期待することができます。

この数字が示唆するところは明らかでしょう。日本は欧米各国の様子を見ながらAI導入を検討するのではなく、同分野のパイオニアとして積極的に活用を進める必要に迫られているのです。

 

なぜ日本ではこれほど大きな効果が期待できるのでしょうか?その背景の1つとなっているのは深刻な労働力不足です。アクセンチュアの試算によると、超少子高齢化社会の到来によって労働力の需給バランスが崩れ、2030年には人手不足が約900万人に達すると予測されます。特にサービス業や接客業など、現時点でも事態が深刻な労働集約型産業では、AIの活用が緊要の課題となるでしょう。 

 

「ミッシングミドル」の重要性

AIをはじめとするテクノロジーの進化と業務への活用を考える際には、人間だけが活動する領域とマシンだけが活動する領域を分けて議論が行われることが少なくありません。しかしアクセンチュアのリサーチによると、人間とマシンの活動領域に明確な区切りができる可能性は低いでしょう。インテリジェント・テクノロジーと人間の能力を同時に活用して協働を実現する中間領域「ミッシングミドル」が、今後ますます重要となってくるのはそのためです。また人間とマシンの協働が進むことで、共感力など人間だけが持つ能力の価値もさらに高まることが予測されます[1]。

ミッシングミドルは、AIのポテンシャルを最大限に活用し、新たな価値を生み出しやすい領域でもあります。日本の金融機関は、人間とマシンの協働が働き方にどのような変革をもたらすのか理解し、前者の創造力と後者の能力を最大限に発揮させる方法を考えていく必要があるのです。

また人間とマシンの協働によって、両者がより複雑なインタラクションを行うための3つの役割が新たに発生するでしょう:

  • トレーナー(訓練者):マシンに学習データをフィードし、特定タスクや人間らしい振る舞いをできるように訓練する。そしてマシンと人間が相互のアウトプットをもとに学習し合う。
  • エクスプレイナー(説明者):マシンのアルゴリズムを分析し、他のステークホルダーのためにアウトプットの意味を解釈すると共に、一貫性やコンプライアンスをチェックする。
  • サステイナー(維持者):マシンのパフォーマンスを監視し、サステイナビリティやステークホルダーの価値を守るため、必要に応じて制限や例外を設ける。 

MELDS – ミッシングミドル領域でのAI活用に不可欠な5つの原則

AIやロボットの導入を進めることが、そのまま効率的な活用に結びつくとは限りません。AIをうまく使いこなしている企業には大きく分けて5つの特徴があります。アクセンチュアではそれぞれの頭文字を組み合わせてMELDSと呼んでいます。

  • マインドセット(Mindset = M)ミッシングミドルにおける仕事を、既存業務・プロセスの枠組みを超えたゼロベースで検討。テクノロジーや顧客体験、コラボレーションなど様々な側面から継続的に業務の再構築に取り組んでいます。
  • 実験(Experiment = E):日本企業の多くにはミスや失敗を恐れる傾向が見られますが、AIを有効活用するためには失敗を恐れず、様々なデータを利用して実験を繰り返すことが不可欠です。
  • リーダーシップ(Leadership = L):AIが意図せぬ結果や影響をもたらさないよう、初期段階より効果的なコントロールの枠組みを設定し、リーダーシップを発揮しながらAIの責任ある使用にコミットしています。
  • データ(Data = D):AIが持つ強みの1つは、大量のデータを蓄積・処理して学習し、進化を遂げる能力です。この能力を最大限に発揮させるためには、多様で鮮度が良く、質の高いデータを大量かつリアルタイムに収集・管理するサプライチェーンの構築が重要となります。
  • スキル(Skill = S):人間とマシンの協働を実現するためには、従業員が(特にミッシングミドル領域で)新たな融合スキルを獲得する必要があります。これまでの人間とマシンのインタラクションとは異なり、両者がお互いから学んでパフォーマンスを向上させる好循環を生み出しています。

AI活用を成功に導くための3つのポイント

また、日本の金融機関がAI活用に取り組む際には、特に3つのポイントに留意する必要があります。その1つ目は、他社とのコラボレーションを重視することです。AIの効果的な活用には、優れた技術力やアルゴリズム、質の高いデータ、そしてこうした要素をビジネスアイディアとして組み合わせる能力が欠かせませんが、1つの企業が高いレベルでこれら全てを実現することは至難の技です。コラボレーションが重要となるのはそのためです。

アクセンチュアが実施した調査では、AI活用にあたり自社内開発だけでなく社外とのコラボレーションを行う企業は、そうでない企業の約2倍のスピードで企業価値を向上させているという結果が出ています。

2つ目は、自社の事業環境に適した独自の活用アプローチを模索することです。日本の企業はともすれば、前例を重視して他国・他社のやり方を真似る、あるいはとりあえず有名な技術を使っておこうという考えに陥りがちです。しかしこうした考え方は、必ずしもAIの効果的活用につながりません。

特に重要な3つ目のポイントは、長期的な観点でAIへの投資判断を行うことです。導入のタイミングから資産価値が低下していくその他多くの投資とは異なり、資産としてのAIの価値は時間の経過と共に上昇します。AIはデータを学習して進化し、ビジネスツールとしての有用性が向上させていくという特性があるためです。導入したタイミングではなく、その先の進化も見据えながら投資の効果・価値を判断する必要があるでしょう。

私が担当したウェビナーでは、人間とマシンの協働を実現し、ビジネス変革の第三の波に立ち向かう方法について、最近刊行された著書の内容を交えながらさらに詳しく解説しています。

[1] :Advancing Missing Middle Skills for Human-AI Collaboration, Accenture (2018)